Redução dimensional de imagens : aplicação de funções de (pré) agregação baseadas naintegral de Choquet
Autor: Jéssica Camila Saldivia Bueno (Currículo Lattes)
Resumo
O crescente aumento do volume de dados, juntamente com a alta complexidade destes, tem gerado a necessidade de se desenvolver técnicas de extração de conhecimento cada vez mais eficientes, tanto em custo computacional quanto em precisão. A maioria dos problemas que são tratados por esses técnicas, como classificação de imagens, tem informações complexas a serem identificadas. Esses métodos usam uma variedade de funções dentro das diferentes etapas que são empregadas em suas arquiteturas. Uma dessas etapas consiste no uso de funções de agregação para redimensionar imagens. Neste contexto, apresenta-se um estudo de funções de agregação e pré-agregação baseadas em integral de Choquet. A principal característica da integral de Choquet, em comparação com outras funções de agregação, é considerar, por meio de uma medida fuzzy, a interação entre os elementos a serem agregados. Neste sentido, apresenta-se um estudo avaliativo do desempenho de algumas funções de agregação e pré-agregação baseadas na integral de Choquet em redução dimensional de imagens. Portanto, o objetivo principal deste trabalho é comparar tais funções com as usuais na literatura que são as funções máximo e média, procurando resultados que podem ser melhores do que destas funções. Os resultados foram avaliados utilizando uma série de medidas de qualidade de imagem. Foi possível observar que a integral de Choquet e suas generalizações mantiveram a integridade da imagem original, sendo capaz de minimizar problemas de bordas serrilhadas em linhas oblíquas/diagonais e de contraste em comparação com os agregadores usuais embora não sejam quantitativamente as mais similares com a imagem original conforme mostrado com as medidas de qualidade.